Matric No:Section: Lecturer's Name:	Name:	
Lecturer's Name:	Matric No:	Section:
	Lecturer's Name:	

المامة السلامية العالمية ماليريا INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

MID-TERM EXAMINATION SEMESTER 1, 2019/2020 SESSION KULLIYYAH OF ENGINEERING

Programme

: ENGINEERING

Level of Study

: UG 2

Time

: 5:20 pm-6:50 pm

Date

: 23/10/2019

Duration

: 1 Hour 30 Minutes

Course Code : EECE 2313

Section(s)

Course Title : Electronic Circuits

This Question Paper consists of Eight (8) Printed Pages (including cover and two blank pages) with Three (3) Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO

- Use only pen for writing the answer
- Do not use your own paper sheet and no extra paper will be provided
- A total mark of this examination is 50
- This examination is worth 30% of the total assessment
- For drawing, you may use a pencil
- Answer ALL THREE (3) questions
- Answer on the question paper

Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal.

	Question 1	Question 2	Question 3	Total Marks
Marks	20	20	10	50
Marks				
Obtained				

Q.1 [20 marks]

(a) An RC-circuit circuit as shown in Fig. 1(a), derive the expression (step by step) for the voltage transfer function $T(s) = v_o(s)/v_i(s)$. Find the corner frequencies of the circuit if $R_s = 4.5 \text{ k}\Omega$, $R_p = 1.5 \text{ k}\Omega$, $C_1 = 80 \text{ pF}$ and $C_2 = 20 \text{ pF}$. (6+2 marks)

(b) Draw the Bode plots (magnitude and phase) of the following transfer function.

(8 marks)

$$T(s) = \frac{10^{-5}s(s+250)}{(s+150)(s+400)}$$

Determine the magnitude and phase at s = 550 rad/Sec, using the solution from the graph of the question Q1.(b).

$$T(S) = 10^{5} 250 S(1 + 150) = 41.67 \times 10^{9} S(1 + 150) (1 + \frac{5}{400}) = 41.67 \times 10^{9} S(1 + \frac{5}{400})$$

Q.2 [20 marks]

A common emitter amplifier circuit as shown in Fig. 2, with the following circuit component values are, $R_{\rm S}=1.5~{\rm k}\Omega$, $R_{\rm I}=55~{\rm k}\Omega$, $R_{\rm I}=1.5~{\rm k}\Omega$ and $R_{\rm I}=10~{\rm k}\Omega$. The transistor has a small-signal parameters, $\beta=120$, $r_{\pi}=1.5~{\rm k}\Omega$ and $r_{\rm 0}=\infty$. Assume that, $C_{\rm C2}$ is infinity.

i. Draw the small-signal equivalent circuit

(3 marks)

ii. Evaluate the midband voltage gain, $A_v = \frac{v_o}{v_i}$ in dB scale.

(6 marks)

iii. Design the circuit so that the -3dB lower corner frequency, $f_L = 200$ Hz. (7 marks)

iv. If, $C_L = 10 \, nF$ determine the -3dB upper corner frequency, f_H .

(4 marks)

(Space for answer to the question Q.2)

$$A_{V_{A}} = \frac{76}{V_{b}} = \frac{-\cancel{P}I_{b}P_{c}}{F_{R}I_{b}+F_{E}(t+\cancel{B})}I_{b}$$

$$= \frac{-3P_{c}}{Y_{R}+F_{E}(t+\cancel{B})} = \frac{120\times3.335K}{183K}$$

$$= -2.186$$

$$A_{V} = A_{V_{A}} = \frac{P_{C}}{P_{C}+P_{C}} = \frac{1.073}{(1.073+115)}L$$

$$= -1.925 \text{ V/V}$$

$$= \frac{1}{2\pi C_{Q}(P_{S}+P_{C})} = \frac{1}{2\pi \times 200\times(1.5+11.073)}K$$

$$= \frac{1}{2\pi \times 100\times(1.5+11.073)}K$$

Q.3 [10 marks]

- (a) Draw the detail high-frequency model of a MOSFET and mention the name of each parameter. (2 marks)
- (b) A short-circuit MOSFET current amplifier as shown in Fig. 3(b).
 - i) Determine step by step the unity gain bandwidth or f_T of the MOSTET. (6 marks)

ii) Calculate the bandwidth of the amplifier for current gain equal 15. Assume that, the MOSFET parameter are, $g_m = \frac{15mA}{V}$, $C_{gs} = 12pF$ and $C_{gd} = 5pF$

$$f_{T} = BW, Gain$$

$$f_{T} = \frac{g_{m}}{2\pi (g_{d}+g_{s})} = \frac{15m}{2\pi (12+s)} = 140,43 \text{ NH2}$$

$$f_{T} = BW \times Gain \Rightarrow G \cdot BW = f_{T} = \frac{140,43 \text{ NH2}}{15}$$

$$= 9,362 \text{ MH2}$$